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Three-loop calculation of the random random walk 
problem: an application of dimensional transformation and 
the uniqueness met hod 
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t Department of Theoretical Physics, State University of Leningrad, Ul’yanovskaya 1 ,  
Staryi Petergof, 198904 Leningrad, USSR 
$ Research Institute for Theoretical Physics, University of Helsinki, Siltavuoren- 
penger 20 C,  SF-00170 Helsinki, Finland 

Received 9 May 1990 

Abstract. The method and details of the calculation of the three-loop contribution 
to the anomalous dimension of the diffusion coefficient of the model of a random walk 
in a potential random field with long-range cordations are presented. Contrary to 
earlier conjectures, this contribution does not vanish identically. A new method of 
calculation of multi-loop Feynman graphs with complicated numerator structure is 
suggested. It leads to simpler integrals in a space of higher dimensionality, which are 
computed using the recursion relations of the uniqueness method. 

1. Introduction 

We consider the problem of diffusion in a potential random velocity field described by 
the equation 

[-iw - D,V(V$(z) + V)]c(z,w) = 0 (1) 

where c is the density (Fourier-transformed over the time variable) of diffusing par- 
ticles, Do is the bare (not renormalized) diffusion coefficient, and $J is the random 
potential with zero mean and the correlation function defined by the Fourier trans- 
formation F of the (generalized, when necessary) function l/lp12+2a: C 0 (z - 2’) E 
($J(~)$ I (Z ’ ) )~  = g0(2n)-dF[l/lp12+2C](z - z’), i .e. 

if d = 2 + 2 a  2gO1ln 15 - 5’1 
(44 +*r(i + .) 

d - 2 - 2 a  (2)  
otherwise. 

C,(z - 2’) = 

Here, I? is the gamma function and the (non-negative) bare coupling constant go 
describes the strength of the disorder. We have omitted the finite additive constant, 
which may be present in the relations (2)  for d 5 2 + 2 a .  Since the potential 4 enters 
equation (1) with a derivative, this constant is irrelevant. 
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This is a special case of the problem of diffusion in a random field, which recently 
has been extensively studied [l-31. The problem may be cast in a field-theoretic 
form [2], in which the asymptotic behaviour of the diffusion can be studied by the 
renormalization group (RG). In the present case with a potential random field, the 
renormalization-group beta function, which governs the long-time asymptotic be- 
haviour of the model, turns out to  be trivial [3-51 (i.e. all the loop contributions 
to  i t  vanish) leading to  disorder-dependent asymptotic behaviour a t  the upper critical 
dimension d = d,, and strong-disorder regime below it d < d,. Moreover, in one- 
and two-dimensional cases with logarithmically growing correlations of the random 
potential, two-loop and higher order contributions to  the anomalous dimension van- 
ish [3-71, i.e. it can be calculated perturbatively exactly. It has been shown recently 
by explicit three-loop calculation [7] that  this is not true for arbitrary dimensions of 
space, contrary to  earlier conjectures [3,5,6].  In this paper, we present the method 
and details of the calculation used to  obtain this result, which were omitted in the 
earlier short account of this work [7]. We have used a few novel ideas in the calculation 
of multi-loop Feynman graphs where the structure of the numerator of the integrand 
is complicated. First, we have found it convenient to express traces of products of 
effective longitudinal vector propagators in terms of Gram determinants. Second, we 
have used an important formula, which allows us to  remove the Gram determinants 
from the resulting integrals with a simultaneous shift by two in the dimensionality of 
space. We think that  these tricks might be useful also in other problems than the 
present one, and therefore deserve detailed discussion. 

The paper is organized as follows. in section 2 we construct a convenient, al- 
though not quite standard, graphical expression for the averaged Green function of 
the stochastic problem, equations (1) and ( 2 ) .  In section 3 the main tools of calcula- 
tion are presented with the details of the calculation of the graphs, and section 4 is 
devoted t o  discussion of the results. In appendix 1 we give the proof of a fundamental 
lemma of dimensional transformation, and in appendix 2 the properties of a special 
two-loop graph are analysed. 

2. Graphical expression for the Green function 

We shall calculate the retarded Green function of equation (1) averaged over the 
random potential $. Using functional representation for the 1c, average and the Green 
function G, of equation ( l ) ,  we arrive a t  a field theory, whose renormalized action is 
of the form 

with the convention that all closed loops of bare p@ propagators are zero. All the neces- 
sary sums and integrals are implied in expression (3) ,  and subsequent similar formulae. 
I t  has been shown [4] that  the field theory (3) is multiplicatively renormalizable, and, 
moreover, i t  can be renormalized by a single renormalization constant 2. We have 
introduced the scaling parameter M in (3) and denoted by C the ‘renormalized’ corre- 
lation function C, which is obtained from the bare one CO by the substitution go + g. 
The renormalized ‘mass’ m is defined as m = iwZ/Do, and the parameter E = 2 + 2 a - d ,  
where d is the space dimensionality. The renormalization constant Z determines the 
anomalous dimension 70 of the diffusion coefficient = - M d h  Z / d M I o ,  where the 
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subscript indicates that  the partial derivative is taken with fixed values of the bare 
parameters. Since the beta function of the model (3) is trivial, a t  the upper critical 
dimension the renormalized coupling constant g remains a free parameter, on which 
the anomalous dimension yo depends, and we choose g = go. The full propagator G 
of the renormalized field theory (3) is connected with the averaged Green function G, 
of equation (1) as follows (G,(z, z ' ) ) ~  = ZDilG(z, z'). 

The anomalous dimension does not depend on the renormalized mass m of the 
model [9], therefore we calculate it in the massless theory, and henceforth set m = 0. 
To avoid infrared difficulties, we introduce the scaling parameter M as the infrared 
cutoff in the regularized $$ correlation function: 

d p  exp[ip(z - z')] 
Creg(z - 2') = g - J ( 2 ~ ) ~  (p2+M2) l+a  ' 

(4) 

To remove large-momentum divergences, we use dimensional regularization of the field 
theory (3) with the parameter E = 2+2a-d. The full propagator G of the renormalized 
massless field theory (3) may be found by averaging the solution G+(z,y) of the 
stationary equation 

over the random potential $J with the weight exp($C-'$/2MC), i.e. G(z - y) = 
(G+(z, y)). Introducing the function R ( z ,  y; $) = Z;lZexp[$(z)]Gcl(z, g), where 
2, is a new renormalization constant, and the matrix T (we use the same notation 
for functions and their Fourier transforms) 

we obtain from (5) the expression [7] 

T = -Z;' [S + 2(1+ US)-'Pll]  . (7) 

Here, S is the matrix S,,(p) E 6,, - 2p,p,/p2 (note that S2 = l), PI1 is the 
longitudinal projection operator PA,(p) = p , p , / p 2 ,  and the function U is defined as 
U ( z ;  $) tanh[$(z)/2]. The renormalization constant Z of the field theory (3) may 
be determined from the relation 

up to  finite renormalization [7]. 
Averaging expression (7) over the renormalized distribution of the random po- 

tential $ we obtain a graphical representation of the function (T), constructed from 
vector lines corresponding to  S, scalar lines corresponding t o  the $$ correlator (4) 
and vertices with two S-legs and any odd number of $-legs generated by the function 
U = tanh($/2). The advantage of this representation compared with the original 
field theory (3) is that  the number of graphs to be calculated is significantly reduced. 
However, the graphical expression for (T) does not correspond to  any multiplicatively 
renormalizable field theory, and to  carry out the renormalization, we use t,he fact 
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that  the function ( R )  can be made finite by a suitable choice of the renormalization 
constant ZR [7]. 

We define the self-energy matrix E as 

((1 + us)-’) (1 - e S)-1 (8) 

and introduce the function Q: ( R ( p , q ; $ ) )  E ( 2 ~ ) ~ 6 ( p  + q ) Q ( p ) / p 2  for which we 
obtain from (6), (7) and (8) the equation 

We determine the renormalization constant ZR by the singular in E contributions only, 
and expanding ZR and e in g 

ZR = 1 + z1 + 2, + z, + ” ’  e = E,  + e, + E, -t 

and choosing the Zi to  ensure the absence of divergences in E in the function Q to 
third order in g, we obtain 

2, = -2E, 
z, = 2 E ;  - 2E2 

- -  
2, = -$E; + 4C1C, - 2(c, + $7) , 

The extraction of the singular in E part of a quantity is denoted by a bar above it. 
The constants Ci are defined as follows: 

%,” = 6 d C i  + Fi(P2)1 + P , P , J i ( P 2 )  

where Fi + 0 and Ji < CO in the limit p --+ 0. 
Graphical expressions for the matrices E, and E, are shown in figure 1, and the 

three-loop graphs, which give rise to  e3, in figure 2 .  The double lines stand for the 
matrix S, and the full lines denote the regularized correlation function Greg; the vertex 
factors are equal to unity. 

3. Calculation of the three-loop graphs 

To extract the constants C, from the graphs of figure 1 and figure 2 ,  it is sufficient to  
calculate them at  zero external momentum. It is convenient to take the trace of the 
matrices corresponding to  the graphs, after which the integrands may be simplified 
by the use of the properties of the matrix S. The traces of products of S matrices 
can be expressed in terms of relatively simple combinations of scalar products of the 
internal momenta, and Gram determinants, and it is the properties of the latter which 
simplify the calculation drastically. The simplest examples of such relations are 

T r S ( k ) = d - 2  
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where Gr ( k , p )  and G r  ( k ,  p ,  q)  are the Gram determinants of two and three vectors, 
respectively 

Figure 1. One-loop (a) and two-loop (b) graphs of the diagrammatic expression for 
the 'self-energy' matrix 2 defined by equation (8). The ordinary lines correspond to 
the regularized correlation function (4)  C,,,(p) = g / ( M 2  + p 2 ) ' t a ,  and the double 
lines to the matrix S,,(p) = 6,, - 2 p m p , / p 2 .  The coefficients from the expansion 
of the function U = tanh($/2) together with the combinatorial factors are indicated 
explicitly, and thus all the vertex factors in the graphs are equal to unity. 

For C, we readily obtain C, = [ ( d  - 2 ) / 4 d ( 2 ~ ) ~ ]  SdpCre,(p), which yields 2, = 
-crq/(4~)'+"I'(2 + & ) E .  Here, C,,,(p) is the regularized correlation function (4) in 
momentum space. In the S-matrix representation, the earlier two-loop result [8] may 
be verified without any calculation of graphs. Indeed, from the relations (9) it follows, 
tha t  the sum of the four two-loop graphs of figure 1 is equal to an integral, which 
contains the  three vector Gram determinant in the integrand (the trivial contribu- 
tions proportional t o  the square of the one-loop graph cancel). However, the Gram 
determinat of linearly dependent vectors vahishes, therefore we immediately see tha t  
Tr k2 = 0: thus C, = 0: too. 

For the same reason in the trace of the last eight graphs of figure 2 only the trivial 
parts proportional to (d-2)[JdpCreg(p)l3 survive. Due to this and the relation Tr S = 
d - 2  the total contribution of the last 12 graphs of figure 2 to E, is - 7 ~ i ~ E , / 3 ( d - 2 ) ~ .  
For the graphs form the 11th to 14th parts of figure 2 with products of three S 
matrices the  last relation in (9) yields expressions, in which the scalar products of 
different internal momenta enter only in the Gram determinant. The  most difficult 
graphs are the  first ten in figure 2,  which involve products of five S matrices. The  
relations (9) are not sufficient to carry out the necessary algebraic transformations, 
and it is convenient to introduce the symmetric matrix M 

with the properties M ( p , q ) p  = 0, k M ( p , q ) k  = G r ( k , p , q ) .  To proceed, we need 
expressions for traces of products of S and M matrices, e.g.  
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Figure 2. Three-loop graphs corresponding to 9 3 .  The graphical rules are the same 
as in figure 1. 

T r M ( k , p ) M ( k , p + q )  = ( d - 2 ) G r ( k I p ) G r ( l z , p + q )  - k 2 G r ( k , p , q ) .  
Using these and analogous relations we express the fourteen non-trivial graphs of 
figure 2 in the form 

x Creg(k)Creg(P)Creg(q)Gr ( ' ! P I  q)li('> P ,  q)  (12) 
where Di denotes the full contribution to C, of the ith graph in figure 2,  Creg is 
the regularized correlation function of the random potential, and the functions li, 
i = 1 , 2 , .  . . , 14 are listed in the table 1. To proceed with the calculation of these 
integrals, we use the following lemma to remove the Gram determinant from the 
integrand. 

Lemma. The formula of dimensional transformation 

x f ( u 1 z 2  + a2y2 + a 3 2  + 2 a 4 z y  + 2 a 5 z z  + 2a6y%)  
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Table 1. Expressions for the functions I , ( k , p ,  q ) ,  which determine the non-trivial 
parts of the integrals corresponding to the first fourteen graphs of figure 2 in the 
same order. 

holds for functions f such that the integrals involved converge. 

The proof is given in appendix 1. Using Feynman parametrization and differen- 
tial operators we may cast all the integrals of the type (12) in a form in which the 
momentum integrals are of the type required in the lemma. On the other hand, the 
parametric integrals do not depend on the dimensionality of the momentum space. 
Therefore, the lemma allows us to  omit the Gram determinant in the integrals corre- 
sponding to  the non-trivial parts of the first 14 graphs of figure 2 with simultaneous 
change in the dimensionality of the integrals by two and multiplication of the inte- 
grands by (d - 2)(d - l ) d / ( 2 ~ ) ~ .  The resulting graphs in the ( d  + 2)-dimensional 
space are logarithmically divergent, and a great deal of them contain also divergent 
subgraphs. For conveniency of calculations, we rearranged 
obtain simplest possible graphs with subdivergences, thus 

14 2(d - 2) 3 4(d  - 2)(d - 1 )  
cDi = -[I/ d 
i = l  

- (2n)3(dt1) 

the sum of the integrals to 

6 

with the expressions for the functions K i ,  i = 1 , 2 , .  . . , 6  listed in t,able 2.  Graphs 
corresponding to functions Ii‘, - I<, do no contain subdivergences, whereas those 
corresponding to It-, and do, but they have simpler structure, and therefore are 
calculable. 

We need singular in E contributions of the graphs only. For graphs without subdi- 
vergences no subtractions are necessary, and since the residue of the pole 1 / ~  in such 
a graph does not depend on dimensional parameters, we may choose the masses in 
all its lines nearly arbitrarily, the only restriction being that we must not introduce 
infrared divergences by the choice of masses. Thus, we set M = 0 in two of the three 
massive propagators of the graphs corresponding to Z~l-Ii‘4, obtaining an integral of 
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Table 2. 
calculated graphs. 
those with K5 and Ks contain subdivergences. 

Expressions for the functions K , ( k , p , q ) ,  which correspond to actually 
Graphs with Kl  -K, are superficially divergent only, whereas 

a product of a massless finite two-loop graph of self-energy type and a massive prop- 
agator Greg. A massless two-loop self energy graph is proportional to  a power of the 
external momentum multiplied by a function of dimensionality and the exponents of 
the powerlike lines. The integral of Creg multiplied by a power of momentum is readily 
calculable with the result 

Here, and henceforth we use the convention [lo] ,u E d / 2 .  The value of the exponent 
of the power function is found from dimensional analysis of the integral corresponding 
to  the two-loop graph, and the task is to calculate the coefficient function, which we 
shall call the value of the graph. 

For the graphs corresponding to  K1-K4 the pole 1 / ~  arises from the integral with 
Greg, whereas all the two-loop massless graphs turn out to be finite. To compute them 
we have used the method of uniqueness [lo], which is the most convenient means for 
such a task. In fact, we did not need to  use all the tools of this powerful method, 
but only the various recursion relations and the transformation group of the master 
two-loop graph. In this method the calculations are carried out in coordinate space. 
Instead of using the Fourier transformation we simply reorganize the lines on a mo- 
mentum graph in such a way that the integration variables sit a t  vertices instead of 
flowing in loops. We present here the main stages of the calculation of the graph 
corresponding to K,, which is relatively simple, but which contains all the essential 
ingredients of the method. 

Figure 3. Two-loop massless graph from the calculation of the integral with K3. The 
graph is computed in the coordinate space, in which each vertex carries a coordinate 
variable I .  The coordinates of the vertices on the left and on the right are fixed, 
whereas those in the middle of the graph are integrated out. A line with an index 
a between vertices with coordinates 11 and 12 corresponds to the function l/(zl - 
I ~ ) ~ O ,  and an arrow pointing from 11 to 0 2  represents the vector 1 2  - 2 1 .  The 
coefficient function L3 is called the value of the graph, and the quantity A has been 
introduced to regularize the intermediate divergences in the calculations. Eventually, 
only the value of the graph for A = 0 is needed. 
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Performing the integral with the remaining massive line, we obtain the two-loop 
graph depicted in figure 3,  which still contains a vector argument. To each vertex we 
prescribe a coordinate variable, a line between two vertices corresponds to a power 
function of the difference of the coordinates a t  the vertices according to the following 
rule: a line with the index a between vertices z1 and z2 corresponds to the function 
l / (zl  - z2)2a. The  graph is calculated for E = 0,  therefore the index p = 2 + CY. 
The  arrow pointing from z1 to z2 represents the vector x 2  - zl. Finally, there is 
an  integral over the variables of the two vertices in the middle of the graph, whereas 
the  variables at both ends of the graph (as well as at the ends of the line on the 
right hand side of figure 3) are free parameters. In the graph of figure 3,  we have 
introduced a regularising parameter A in view of the divergences which appear in the 
intermediate calculations (but which, of course, cancel in the final result, since the 
integral corresponding to the graph is convergent at A = 0). To find the value of 
the graph, we multiply the relation of figure 3 by z (we use this variable to  remind 
ourselves tha t  we now regard the graph as a coordinate space graph),  and expressing 
the scalar product on the left-hand side in the form of a sum of squares, we obtain for 
the  coefficient function L,  the relation shown in figure 4. 

L , (A)  = 

Figure 4. The recursion relation for the value L3 of the graph of figure 3. The three 
first graphs on the right-hand side of this equation may be calculated by the chain 
rule (14), whereas the last one leads to the function h.  

The  three first graphs on the right-hand side of figure 4 may be calculated by 
the ‘chain rule’, which allows us graphically to replace two lines connected by an 
integration vertex by a single line; 
convolution of two power functions: 

analytically it is the following formula for the 

Figure 5 .  The recursion relation, which allows us to express the last graph of figure 4 
as a sum of graphs calculable by the chain rule, and a graph corresponding to the 
function h. 
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To calculate the fourth graph, we use the recursion formula [lo], shown graphically in 
figure 5,  which allows us to  reduce the graph to  three new graphs calculable by the 
chain rule, and a graph which we were not able to  calculate in a closed form. The 
value of this graph is proportional to  the function h defined by the relation 

Here, the dimension of space is d = 2p. However, we succeeded in calculating the 
values of the function h for even integer values of dimensionality. The calculation and 
the properties of the function h are presented in appendix 2. We would like to  point 
out that  with the aid of the transformation group of the master two-loop graph several 
other graphical representations of the function h may be derived; these are depicted 
in figure 6. 

Figure 6. Different graphical expressions for the function h regarded as the value 
of the corresponding graph (i.e. the coefficient of the overall power function of the 
coordinate). These equations were obtained with the aid of the transformation group 
of the master two-loop graph [IO]. 

The graphs corresponding to  IC, ,  I<, and Ii', were calculated in a similar fashion 
with the following result a t  the leading order of the E expansion 

where $' is the trigamma function. 

be careful with the masses. For the sum 
The  graphs corresponding to Ii', and IC, contain subdivergences, therefore we must 

(12 + IC, + IC, = - + 2k:q + 2pq 
k2q2(k + p)2(k: + p + q ) 2  

the large-momentum behaviour of the corresponding integrand is such that replacing 
the factor l/(p2 + by l/p2(lta) we change the value of the integral by a finite 
in E quantity only, which is irrelevant from the point of view of the RG analysis. After 
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this the integral with IC, can be calculated using equation (13) and the chain rule (14). 
The integrand with IC, becomes proportional to 

1 
(k2 + Mz)1+a(q2  + MZ)l+”p2(1+a)k2(k + p)Z(k + p + q ) 2  

and it is not difficult to  see that the singular in E terms of the corresponding integral 
are not affected by the substitution 1/(q2 + M2)’+0  + l/q2(’tQ) after which the 
relations (13) and (14) are again sufficient to  compute the resulting integral. 

4. Discussion 

The calculations of the previous section yield the following three-loop contribution to 
the renormalization constant Z:  

The function h ( p )  is defined by equation (15), and its properties are analysed in 
the appendix 2. In particular, its values can be calculated for integer values of the 
argument greater than one (for p 5 1 the integral, which defines the function h ,  
diverges). For example, h(2) = 6((3) x 7.212 and h(3) = ((3) - 1/3 x 0.8687, where 
C is the Riemann zeta function. In particular, we conclude from these results that 
the three-loop contribution to  the anomalous dimension of the diffusivity yo does not 
vanish identically, contrary to  earlier conjectures [6,5]. For yo we obtain 

The three-loop contribution vanishes with a as it should, and it also vanishes a t  
a = -1/2, which corresponds to d, = 1. Using the exact solution of the one- 
dimensional stationary problem, equations (1) and (2) it has been shown [7] that 
the expression (16) is indeed valid also in the one-dimensional case, and, moreover, 
that  the total anomalous dimension yo is exactly equal to its one-loop value, as in the 
two-dimensional case. 

In conclusion, we have shown by explicit calculation that,  contrary to  earlier con- 
jectures, the three-loop contribution to the anomalous dimension of the diffusion coef- 
ficient for the model of diffusion in a potential random field does not vanish identically, 
but only in the one- and two dimensional cases, in which the one-loop contribution 
yields the exact value of the anomalous dimension. We have explained in detail the 
method of calculation, which includes novel features such as the use of Gram deter- 
minants and dimensional transformation to  simplify the structure of integrals corre- 
sponding to  multi-loop graphs with vector propagators. These tricks also allow us 
to  derive new useful recursion relations for functions defined by massless Feynman 
graphs. 
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Appendix 1. 

In this appendix we give the proof of the lemma of dimensional transformation. In 
the integral 

J / d d z  / d d y  / d d z  Gr (z, y, z ) f ( u , z 2  + a,y2 + a3z2 

+ 2a4zy  + 2a5zz  + 2a6yx) 

we change variables to  express the argument of the function f in the form of a sum of 
squares of the integration variables. The corresponding Jacobi determinant is equal to  
unity, and since the Gram determinant does not change under such a transformation, 
we obtain 

J = / d d z  / d d y  / d d r  Gr (2, y, z)f(b,x2 + b,y2 + b3z2) 

where 

Using the relation Gr ( 2 ,  y, z )  = z M ( y ,  z ) z ,  where the matrix M is defined by equa- 
tion ( l l ) ,  we may write 

J = / d d y  / ddx M,,(y, z )  / d d z  x,x,f(b1x2 + b2y2 + b3z2) 

where, due to  rotational symmetry, the integral over z yields 

J d d z  x,x,f(blz2 + b,y2 + b3z2) = (6,,/d) d d x  x2f(b,x2 + b,y' + b3z2) J 
3 (6,,/d)F(b,y2 + b3z2). 

Since the trace of the matrix M is equal to (d  - 2)[y2z2 - ( y ~ ) ~ ] ,  we arrive a t  the 
relation 

J = d / ddy  / d d z  Gr ( y ,  z)F(b,y2 + b3z2)  

- - d  / d d r  ( ~ ' 6 , ~  - z,z,) ddyy,ynF(b2y2 + b3x2) 

in which the integral over y yields 6,, multiplied by a scalar function of z z .  Therefore, 
we conclude that 

(d - 2)(d - / ddx  / d d y  / d d x  x2y2x2f(b,x2 + b2y2 + b,r'). J =  
d2  
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In spherical coordinates, the angular integrals factorize, and the squares of the inte- 
gration variables may be included in the radial part of the integration measure, which 
results in the shift d + d + 2 of the effective dimensionality. Introducing angular 
integrals corresponding to the higher dimensionality, we obtain 

( d  - 2)(d - 1) ( ndI'(d/2 + 1))3 
d2 T ~ + ~  r( d/2) 

J =  

x J d d + 2 z  J d d i 2 y  J d d f 2 r  f(blz2 + b2y2 + b 3 z 2 ) .  

Inverting the transformation which led us to the sum of squares in the argument of 
the function f ,  we finally arrive a t  the conjecture of the lemma 

/ d d z  / d d y  / d d r G r ( z , y , r ) f ( o l z 2  + a 2 y 2  + a , r 2 + 2 a 4 z y + 2 a , z r + ~ a 6 y r )  

- - ( d  - 2)(d - 1)d J dd+'z J dd+2y / d d + 2 r  f (a lx2  + a2y2 + a 3 z 2  

Appendix 2. 

We were not able to calculate the function h defined by 

in a closed form, i.e. in the form of a finite combination of the r function and its 
derivatives (or some other well known special functions). The best we achieved was 
the derivation of a recursion formula for this function, and the 'initial condition' for 
this relation, which together allow to compute the values of the function h for positive 
integer values of the argument. 

We obtained this recursion relation in a fashion similar to  the derivation of the 
dimensional transformation lemma. Consider the integral 

1 
h(p + 1) = - d2P+2zld2pt2z 

T 2 ( P + 1 )  x 2  J z:z;(zl - z2)2"z - z2)2(z - z1)2" . 

Inverting the procedure used to prove the lemma, we may write 

G r ( z , z , , z , )  
z~z ; (z l  - z2)2"z - z2)"z - z1)2P 

h(p  + 1) = 2 / d2Pz1d2Pz2 
( p  - 1)(2p - l)& 

and expressing the Gram determinant as a combination of scalar products of the 
vectors 2, zl, and z2, we obtain a sum of graphs, which can be calculated by the 
chain rule, and a graph which yields h ( p ) .  The result is 



5576 S E Derkachov et  a1 

The  initial value for the recursion we obtain for h ( 2 )  from the expression for the 
function C h T ( a ,  p)  defined by the master two-loop graph (depicted on the left-hand 
side of the equation in figure 5) with the following values of the exponents: a ,  = a ,  
a4 = p, aq = ag = = p - 1 = id - 1. This graph has been calculated by both 
the Gegenbauer polynomial 2-space technique [ll], and the method of uniqueness [lo]. 
Obviously, h(2)  is proportional to  C h T ( 1 , l )  in four dimensions, therefore h ( 2 )  = 6C(3). 
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